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ON SUBSPECTRAL ACYCLIC MOLECULAR GRAPHS 
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Abstract 

Based on the contraction and expansion of graphs, the subspectrality of acyclic 
molecular graphs is treated in a systematic way. The graphs contairting eigenvalues 0, +1 
and + ~/2 are discussed in detail, with emphasis on how to detect and construct the 
concealed species which can neither be recognized by symmetry considerations nor by the 
Heilbronner procedure. As a consequence, graphs and their counts have been given for 
species with numbers of vertices less than 16. 

1. Introduction 

The connectivity of a graph can be characterized by its adjacency matrix A in 
which rows and columns correspond to vertices. The elements are 1 when the row 
verüces and column vertices are connected by edges and 0 otherwise. The characteristic 
polynomial (CP) and eigenvalues play a fundamental role in interpreting properties in 
terms of structures. Tables of Hückel spectra and CPs are available elsewhere [1-3]. 

Considerable interest has developed for the recognition of the phenomenon of 
subspectrality evident in these tables; this has been reviewed in a monograph [4]. The 
most popular method used is symmetry analysis [5-8]. For instance, graphs 1 and 2 in 
fig. 1 have a symmetrical plane perpendicular to the molecular plane and passing 
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Fig. 1. Acyclic molecular graphs having cormnon eigenvalues 0, + "/2. 
Dotted lines signify symmetry planes and solid circles represent nodes. 

through the central vertex, splitting oft an allyl fragment; thus, both of them have 0 and 
± q 2  eigenvalues. However, coincidences between the eigenvalues of different 
molecular graphs occur much more frequently than can be explained by symmetry. As 

*Also known as Yuan-sun Kiang. 

© J.C. Baltzer AG, Scientific Publishing Company 



104 Y. Jiang, G. Chen, On subspectral acyclic molecular graphs 

one of the simple examples, graph 3 also contains eigenvalues 0 and + 42 without a 
symmetry plane. 

In addition to symmetry considerations, the formula given by Heilbronner [9] is 
useful for the factorization of CPs [10-13]. The incident edges of nodes (solid circles 
in fig. 1) am suitable for erasing by splitting oft the common factor (x 3 - 2x); thus graphs 
1-3 all have eigenvalues 0 and + ~/2. The third method, called embedding [14, 15], is 
widely used to deal with benzenoid hydmcarbons. 

If we examine Hosoya's table [3], which tabtdates CPs of acyclic molecular 
graphs having N _< 10 vertices, we can find dozens of sübspectral species which can 
neither be interpreted by symmetry analysis nor by the Heilbronner formula. For 
example, there are four species with N = 9 shafing eigenvalues 0 and + ~/2, displayed 
in fig. 2. We will call them "concealed subspectral species" in our further discussion. 
We now ask the question: How are they recognized? 

x(x2_1) (x2_2) x(x2-2) (x6-6x 4 xS(x2-2) xS(x2-2) (x 4 
(x4-5x2_4) +5x2-1) (x2-1)(x2-4) -6x2+3) 

Fig. 2. Four concealed subspectral species having eigenvalues 
0 and + ~/2, together with CPs given below each diagram [3]. 

In this paper, we develop a method to deal with the problem of subspectrality in 
general and present the result of acyclic molecular graphs in relation to eigenvalues 
+ ",/2, + 1 and 0 with emphasis on the concealed species. 

2. Mathematical background 

The characteristic polynomial of a graph G is defined as follows 

P6(x) = det Ixl - AI, (1) 

where I is the identity matrix and x is a variable. In correspondence, the weighted graph 
can be intmduced, in which each vertex is subject to the value x instead of 0 but the edge 
keeps the standard weight 1. In the discussion of subspectrality, one substitutes x with 
special values + ~/2, +1, 0 and others. To avoid loops in the weighted graph, we put x 
or its substituted numerals as the standard weight for each vertex and assign to those 
verüces and edges numerals or symbols having weights different fmm standard values 
x and 1, respectively. We adopt this convention in later discussions. 

The following theorem is fundamentally impor~ant for the detection and 
construction of concealed subspectral species. 
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THEOREM 1 

Let G be the acyclic molecular graph with standard weight x and 1 for each of 
its vertices and edges, respectively. If G is partitioned into two subgraphs A and B by 
erasing one or more edges, then the CPs of G, B and A'  safisfy 

Pc(x) = PB(X)PA.(X ), with PB(X) ;e 0, (2) 

where A' represents a modified version ofA obtained by adjusting the weight of  vertices 
and edges in A that are originally connected to B, namely, 

(1) If vertex i in A is the common end of a set of  erased edges ijt (t = 1, 2 . . . . .  n), 
which also means B is a multicomponent with vertices JrJ2 . . . . .  jù in com- 
ponents B~, B 2 . . . . .  B ,  respectively, then the modification is limited to the vertex 
i with its weight Yi being 

n 

Yi = X -  ~ PB t -it  (x)/PBt (X), (3) 
t=l 

(2) 

where B t - J t  signifies the fragment obtained from B t by deleting vertex Jt" 

If two (or more) ends of erased edges are left in A, then in addition to their 
modificafion according to eq. (3), an edge is generated between these two ends 
with weight equal to 

bik = PB - j7 (x)/PB (x), (4) 

wher¢/j and k l  are erased edges with vertices i, k in A and j ,  l in B, j l  represents 
the path starting from j to 1 and B -  j l  denotes the remaining fragment after 
removing this path from B. 

The above statement is a simplified formulation of the original theorem 
appearing in refs. [16]. We emphasize its meaning by illustrating a simple example, the 
butadiene graph. This can be partitioned into A and B by erasing one or two edges, as 

p 
shown in fig. 3. In scbeme (1), the modified graph A 1 comes from an ethene fragment, 

o--o o--o ~ o--<)---o-o > o o-o o 

o--Oy yO, b,, Oy 

A 1 A~ 
Scheine (1) Scheine (2) 

Fig. 3.Partition of butadiene graph: the middle edge is ca.sed in 
scheme (1) and two terminal edges are erased in scheme (2). 
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whereas in scheme (2), A 2 is from a couple of  vertices. The weight represented by 
¢ • 

symbols y and b displayed in A 2 and A 2 should be calculated according to eqs. (3) 
and (4). The results are 

y = x -  x/(x a - 1), b = 1/(x a - 1). (5) 

Because fragments B, A'~ and A' 2 are all ethene-like, we easily have the same CP for both 
schemes, i.e. 

Pc(x )  = PB(X)PA~ (X)= (X a -  1) (xy -- 1) = X 4 -  3xa+  1, (6a) 

Po(x)  = PB(X)PAI(X) = (x a -  1)(y a -  b a) = x 4 -  3x2+ 1. (6b) 

The importance of  eq. (3) for predicting whether a molecular graph G involves 
the eigenvalue x or not is quite obvious. This can be carried out by selecting a subgraph 
B or a set of  components B 2, B 2 . . . . .  B according to theorem 1 such that the modified 
graph A' is simple enough to be tested on whether x is an eigenvalue, i.e. 

PA,(x) = O, (7) 

or not. On the other hand, a fragment A" is able to couple with a set of  fragments in the 
way fulfilling eq. (3), generating a large species G. If eq. (7) is satisfied, then x is the 
common eigenvalue of  both species. In other words, the forward direction of  eq. (3) 
means the contracüon of  a larger graph and the opposite corresponds to the expansion 
of  a smaller one; both of  them keep the essence of  subspectrality invariant. 

The situation seems of  more significance when A' coincides with A, namely, 
A' = A. In this case, G shares eigenvalue x with its fragment A. We discuss the condiüon 
A ' = A .  

COROLLARY 1 

If vertex i in A is connected to vertex j in B before erasing edge i j ,  then the 
condition that A = A' is 

PB _;(x) = o. 

This is obvious on referring to eq. (3) and fig. 4. 

(8) 

-o_o_t o_o_« ~n 
A B A B 1 

(a)  (b)  

Fig. 4. (a) Orte edge (dotted line) is erased and vertex i (heavy circle) 
is a node of G; (b) n edges incident from vertex i in A axe erased. 
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COROLLARY 2 

If vertex i in A is connected to vertices Jl in B 1, J2 in B 2 . . . . .  j,, in B simultane- 
ously before erasing (see fig. 4(b)), then the condition that A' = A is 

n 

~., PBt-it (x)/PB, (x) = 0. (9) 
t = l  

This is also obvious on referring to eq. (3). 
CoroUary 1 is a different version of the Heilbrormer formula when there exists a 

node in the considered graph G. It gives nothing new in relation to subspectrality. 
However, corollary 2 is essential to enquire into the details of  topology inherent in the 
concealed acyclic subspectral species. The question is, how to carry out the detection 
and construcfion in general? For this purpose, corollary 3 is presented in addition. 

COROLLARY 3 

Suppose A is a monocomponent  and eq. (9) is satisfied for every vertex in A when 
one erases all edges that A connects with other fragments in G. Then G shares eigen- 

va lue  x with its fragment A. 

This is a generalizafion that eq. (9) holds for all verüces instead of  a single one; 
therefore, A' = A also holds. 

In the remainder, we limit our discussion to concealed species with eigenvalues 
± ~/2, ± 1 or 0. 

3. Subspectrai species sharing + ~/2 eigenvalues 

All acyclic molecular graphs are bipartite, satisfying the pairing theorem. Thus, 
only plus eigenvalues need be considered. The Ca:' of a linear polyene involving n 
vertices has the following formula: 

[n/2] 

gn(x) = ~ ( - 1 ) r ( n -  r)!/(n- 2r)!x n-zr, (10) 
r=0  

and we have its numerical value at x = q2 as follows: 

gn('~2) = (-1)m( •n,4m + ~2Sn,4m+l + S,t,4m+2), (11) 

where ~ b represents the Kronecker symbol. With formula (11), the numerical values 
of  the C~ at x = ,/2 for acyclic species can be evaluated one by one. Graphs and symbols, 
together with the CP values at x = ",/2 for 22 elementary species with N < 7 vertices are 
displayed in fig. 5. 
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1501 2} ~502} 14121~ 

-442 -24"2 -4-]2 

Fig. 5. Acyclic graphs (N _< 7) with symbols and CP values cited below each diagram. 

In fig. 5, the symbols a, fl, ?;,... have been used to assign inequivalent vertices 
in each fragment, because inequivalent vertices of fragment B connected with a fixed 
vertex of A produce different graphs G. This has been implied in eq. (3), where Yi 
depends on the fragments B t - Jt (t = 1, 2 . . . .  ), in which vertex Jt in B t is connected to 
vertex i in A before edle  ijt is erased. In other words, we should classify fragment B into 
subspecies {B} a, {B} p, . . . .  in accordance with which vertex is connected. 

Next, we can tabulate numerical values of-PB (~/2)/PB({2) for individuals 
cited in fig. 5, provided PB(-~2) ~ 0. Sometimes, several (/~}J's give an equal increment. 
For example, the following three contracüons result in a common value -1/x/2: 

{1} • -1/P{1}(42) = -1/~/2, 

{5 } « " -P{4}(~12)/P{5}(~12) = - 1 H 2 ,  

{41}ö . _p{31}(~[2)/P{41}(~12) = _1/~/2" 

(12) 

This results from the fact that vertices a in {5} and 6 in {41} are nodes; thus, 
contractions with respect to { 5} a and {41 }ö are deducible from that of { 1 }. This means 
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that among the three modes of contraction discussed above, only that of  B = { 1} is 
fundamental. We tabulate the increments of vertex weight for fundamental contracfions 
in table 1. 

Table 1 

Numerical values of -PB -j 012)/PB(~/2) for fundamental contractions with N <_ 7 

{11 {5} r {411 ~ {2} {41 ~ {311 ~ 
-42/2 ~2/2 42/2 -~2 42 42 

{41} a {312} « {502} r {511} a {5012} a {5021 a 
-~2/4 -~2/4 42/4 -342/4 -3~2/4 -3~214 

{411} ~ {412}r {501} ~ {501} 6 {501} r {501} a 
-42/3 -~2/3 -42/3 -42/3 ~2/3 -2~2/3 

{4} a {31} a {5} # {41} r 

0 0 0 0 

{4121} a 

-342~ 

{412} a 

-2~/2/3 

Based on table 1, the acyclic graphs sharing eigenvalues +~/2 are easily con- 
structed according to theorem 1 or corollaries 2 and 3. Let us start from the smallest 
graph {1} with x = 0, namely, we put A" = {1} with a zero weight for its vertex. 
Obviously, we have 

P{1}(O) = 0. (13) 

Because 0 can be taken as ",/2 - q2, where 42 is equal to the standard vertex weight 
and -~/2 corresponds to the increment for the contracfion of {2} displayed in the first 
row of  table 1, in accordance with theorem 1 we have 

P{2}(~/2)P{l} (0) = P{31('~2) = O, (14) 

and we arrive at that aUyl graph {3} involving eigenvalues +~/2. Similarly, one can 
write 0 = q2 - q2/2 - ~/2/4 - q2/4, where -~/2/2 is equal to the increment that { 1 } is 
being contracted and -q2 /4  comes from either one of the contractions of  {41 } « and 
{ 312} «. Therefore, three concealed subspectral species with N = 12 sharing eigenvalues 
+q2 are generated (see fig. 6). Furthermore, 0 can be equal to the algebraic sum 

Fig. 6. Concealed subspectral species with N = 12; the solid 
vertex signifies A', the fragment starüng the expansion. 
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"42 - 3,12/4 - ,12/4,  where - 3  ,12/4 is the common increment of  contractions with 
respect to fragments {511 } a, {5012 } a, { 502 } « and {4121 } «. Therefore, eight concealed 
species with N = 13 can be constructed (see fig. 7). 

Fig. 7. Eight concealed subspectral species (N = 13) sharing eigenvalues +42. 

The second channel for the construction of concealed species sharing eigen- 
values +`12 can be initiated by putting A ' =  A = {3}. According to corollary 2 
or 3, a set of fragments with zero sum of increments of contraction (satisfying eq. (9)) 
can connect to either one or two vertices of the allyl graph without loss of +`12 
eigenvalues. On consulting table 1, these zero sums can at first be supposed to 
be -`12/2 + `12/2,-`12 + `12 and -`12/2 - ,12/2 + ,12. They correspond to the six modes 
of contraction shown below: 

0 = -`12/2 + `12/2: B I 

0 = -`12 + "42: B 1 

0 = - `12/2 - 42/2 + "42: B~ 

= (1), 82= (5}r or {41}~; 

= {2}, B 2= {4} ~ or (31}#; 

= {1}, B 2= {1}, B s = {4} ~ or (31}~; 

(15) 

and generate 12 species with N = 9 vertices sharing eigenvalues + "/2 in tol~ if one 
vertex in the allyl graph is used for expansion. However, only four of them are 
distinguishaNe, which have been displayed in fig. 2. 

Furthermore, if two vertices in the allyl graph are subject to expansion in accord- 
ance with eq. (15) simultaneously, then concealed species of 15 vertices are produced. 
In the case that both are terminal vertices, 6 x 7/2 = 21 species result because of 
symmetry. On the other hand, if one of them is the central vertex, 6 x 6 = 36 species 
can be, in principle, produced. However, due to the limitation that each vertex has 
degree no more than 4 in acyclic molecular graphs, only 24 species are allowed in 
practice. These two sets of  acyclic species sharing eigenvalues +,]2 with N = 15 are 
displayed in fig. 8, where { 3 }, playing the role of fragment A (A = A') for the expansion, 
has been marked with solid vertices for clarity. 

Still, there are 12 species with N = 15 which can be constructed by aüaching 
either one set of  fragments at the end of the allyl graph, followed by the connection of 
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q+q~ 

+¢7 

~T.~~ 

~d~ -~d~ 

Fig. 8. Forty-five concealed subspectxal species (N = 15) sharing 
eigenvalues +x/2 formed from {3} by utilizing two verüces. 

another set of  fragments shown in eq. (15). These are displayed in fig. 9, where we use 
stars to show vertices at which the second expansions take place. 
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Fig. 9. Twelve concealed subspectral species (N = 15) sharing 
eigenvalues +~2 produced from {3} by successive expansions. 

One of  the additional zero sums is 0 = -~/2/3 + ~/2/3, where -~/2/3 represents 
the increment o f  contraction of  either one of  the four fragments {501} #, {501 }ö, {412}~ 
and {412} r, while ~/2/3 corresponds to {501 }r Both kinds of  fragments can connect to 
the end or central vertex of  {3}, producing eight species sharing +~/2 with N = 15 
verüces, as shown in fig. 10. Another zero sum, 0 = -~/2/4 + ~2/4, induces the four 
concealed species displayed in tig. 11. 

Fig. 10. Eight concealed subspectral species (N = 15) sharing eigen- 
values +~/2 derived in accordance with the zero sum 0 = -~2/3 + ~/2/3. 

Fig. 11. Four species (N = 15) sharing eigenvalues :i:~2 
derived with respect to the zero sum 0 = -q2/4 + ~2/4. 

Thus, we have 69 concealed subspectral species with N = 15 that involve eigen- 
values +',/2. We tabulate the counts of  such species with N < 15 vertices in table 2. 

Table 2 

Counts of concealed acyclic subspectral species sharing eigenvalues +~/2 (N < 15) 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Count 0 0 1 0 0 0 0 0 4 0 0 3 8 0 69 
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4. Subspec tra l i ty  wi th  e igenva lues  +1  

Analogously,  we can easily perform and find the increments o f  contractions 
- P . .  (1)/Pù(1) which are fundamental for the fragments displayed in fig. 5. They are ~ - j  
listed in table 3. 

Table 3 

Numerical values of-P'n -i (1)/Ps(I) for fundamental contractions with N < 7 

11} 141} r 13} 0 {51} E {4121} r {31} a {61} õ 13110 {61} e {512} ~ 

-1 -1 1 1 1 -1/2 -1/2 1/2 1/2 1/2 

{512} r {41} ~ {41210 {51} ô {4121} 0 {312} 15101} 0 {5101} a {5101} r {412} a 

3/2 -2 -2 2 2 -2/3 2/3 -1/3 -1/3 -3 

Based on table 3, we can find all the concealed subspectral acyclic species 
sharing eigenvalues +1 with N < 15. Their graphs are displayed in fig. 12, and counts 
are listed in table 4. 

° ~  

%+ 

Fig. 12. Concealed subspectral acyclic species sharing eigenvalues +1 with N -< 15. 
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Table 4 

Counts of concealed acyclic subspec~al species sharing eigenvalues +1 with N < 15 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Count 0 1 0 0 0 1 0 0 1 2 1 1 7 12 5 

5. Eigenvalue 0 

The present approach has been used to deal with concealed non-Kekulöans, 
benzenoid hydrocarbons with 0 eigenvalue which cannot be detected by the coloring 
process [17]. For acyclic molecular graphs, coloring of verüces would in general also 
faü to determine the existence of zero eigenvalues. For example, the diradicals in fig. 
13 have, by inspection, an equal number of starred and unstarred vertices. 

g 

Fig. 13. Diradicals with equal bi-colored vertices. 

This can be avoided by uülizing the following coroUary. 

COROLLARY 4 

Zero eigenvalues can be determined by successively deleting terminal ethene 
fragments from the acyclic graph concemed until there remain isolated vertices solely. 
These isolated vertices enumerate zero eigenvalues therein. 

In fig. 14, three simple examples are shown for illustration, where the deleted 
ethene fragments have been enveloped with eUipses for clarity and n o represents the 
number of zero eigenvalues. 

n o = 2 

n o - 0 

~ n 0 2 

Fig. 14. Concealed ~yclic speeies sharing 0 eigenvalue. 
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